Focusing light through dynamical samples using fast continuous wavefront optimization
نویسندگان
چکیده
منابع مشابه
BINARY WAVEFRONT OPTIMIZATION FOR FOCUSING LIGHT THROUGH SCATTERING MEDIA by
SCATTERING MEDIA by XIAOLONG ZHANG (Under the Direction of Peter Kner) ABSTRACT Random light scattering in inhomogeneous media causes strong wavefront aberrations and makes it impossible to focus light. Many wavefront correction techniques have been recently demonstrated to control light propagation in these media. Phase modulation with a spatial light modulator (SLM) and digital light modulato...
متن کاملFocusing light through living tissue
Tissues such as skin, fat or cuticle are non-transparent because inhomogeneities in the tissue scatter light. We demonstrate experimentally that light can be focused through turbid layers of living tissue, in spite of scattering. Our method is based on the fact that coherent light forms an interference pattern, even after hundreds of scattering events. By spatially shaping the wavefront of the ...
متن کاملFocusing on moving targets through scattering samples.
Focusing light through scattering media has been a longstanding goal of biomedical optics. While wavefront shaping and optical time-reversal techniques can in principle be used to focus light across scattering media, achieving this within a scattering medium with a noninvasive and efficient reference beacon, or guide star, remains an important challenge. Here, we show optical time-reversal focu...
متن کاملShack-Hartmann wavefront sensing using interferometric focusing of light onto guide-stars.
Optical microscopy provides noninvasive imaging of biological tissues at subcellular level. The optical aberrations induced by the inhomogeneous refractive index of biological samples limits the resolution and can decrease the penetration depth. To compensate refractive aberrations, adaptive optics with Shack-Hartmann wavefront sensing has been used in microscopes. Wavefront measurement require...
متن کاملFocusing polychromatic light through strongly scattering media.
We demonstrate feedback-optimized focusing of spatially coherent polychromatic light after transmission through strongly scattering media, and describe the relationship between optimized focus intensity and initial far-field speckle contrast. Optimization is performed using a MEMS spatial light modulator with camera-based or spectrometer-based feedback. We observe that the spectral bandwidth of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Letters
سال: 2017
ISSN: 0146-9592,1539-4794
DOI: 10.1364/ol.42.004994